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We present a theory of valence holes as Luttinger spinor based qubits in p-doped self-assembled quantum
dots within the four-band k · p formalism. The two-qubit levels are identified with the two chiralities of the
doubly degenerate ground state. We show that single-qubit operations can be implemented with static magnetic
field applied along the z axis �growth direction� for �̂z operation and with magnetic field in the quantum dot
plane, x direction, for �̂x operation. The coupling of two dots and hence the double-qubit operations are shown
to be sensitive to the orientation of the two quantum dots. For vertical qubit arrays, there exists an optimal
qubit separation suitable for the voltage control of qubit-qubit interactions.
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I. INTRODUCTION

There is currently interest in using single-electron spins in
quantum dots �QDs� for quantum information processing
applications.1–6 In III-V semiconductor quantum dots, such
as GaAs, spins of conduction-band electrons couple to
nuclear spins of the host material and suffer decoherence due
to hyperfine interactions. However, valence hole states are
built from atomic p-type orbitals, which are expected to
minimize the hyperfine interaction between the hole and sur-
rounding nuclear spins.7 The spin of a valence hole as a qubit
is expected to have longer coherence time. A theory of heavy
holes as qubits has been developed in the single-band
approximation.7–9 The justification for the use of the heavy-
hole single-band approximation is that strain and QD con-
finement suppress the coupling between heavy-hole �HH�
and light-hole �LH� bands. Under such an assumption, the
qubit levels are defined by the Jz=+3 /2 and −3 /2 HH states.

In such a simple model, the exchange coupling J needed
to generate entanglement between spins of two holes is pro-
portional to t2 /U, where t is the tunneling strength of the
hole and U is the on-site Coulomb energy. However, recent
theoretical10 and experimental11 works show that in two ver-
tically coupled disklike QDs the spin orbit �SO� coupling
between HH and LH bands changes the sign of the effective
tunneling matrix element t as a function of interdot distance.
If the interdot distance is smaller than a critical value, the
hole state is mainly symmetric. However, if the interdot dis-
tance passes the critical value, the hole state is mainly anti-
symmetric. These results suggest that a description of an
array of hole-based qubits requires taking into account the
hole tunneling between dots with SO coupling between HH
and LH bands. The theory of valence holes in quantum dots
with strong SO coupling has been developed already.12–17 In
this theory hole spin is strongly coupled to orbital motion
and valence-hole states are treated as Luttinger spinors. The
two HH ground states are replaced by two Luttinger
spinors12 with different chiralities.

In this work, we develop a theory of qubits based on the
chirality of the valence hole-based Luttinger spinors. We are
particularly interested in squarelike self-assembled quantum
dots grown on nanotemplates,18 which due to scalable archi-

tecture may lead to quantum information processing devices.
We start with a single hole confined in an isolated QD. We
explicitly define the qubit as two chirality states of Luttinger
spinor and show how to perform single-qubit operations. Our
theory reproduces results obtained earlier by Kyrychenko
and Kossut.13 Next, we investigate the tunneling of a valence
hole in two orientations of two coupled square QDs as illus-
trated in Fig. 1. The tunneling barriers for vertically coupled
quantum dots �VCQDs� and laterally coupled quantum dots
�LCQDs� are modeled as finite potential barriers, as shown
in Fig. 1. The tunnel barrier strength is characterized by the
band offset between the dot and the barrier material. For
VCQDs, we verify the results11 obtained for disk quantum
dots showing the reversal of ground-state character from
symmetric to antisymmetric as a function of interdot dis-
tance. Close to the reversal, the vanishing of tunneling of a
Luttinger spinor hole in VCQDs allows the benefit of strong
confinement defined by growth with the possibility to control
tunneling and hence double qubit operations using additional
metallic gates.

II. MODEL

Following Ref. 12, we expand the wave function of a
valence hole confined to a nanostructure defined by confin-
ing potential V�r� in terms of Jz=3 /2,−1 /2,1 /2,−3 /2
Bloch basis functions. The four-band Luttinger Kohn �LK�
Hamiltonian19 reads

ĤLK =�
P̂+ R̂ − Ŝ 0

R̂� P̂− 0 Ŝ

− Ŝ� 0 P̂− R̂

0 Ŝ� R̂� P̂+
� + V�r�I + ��J · B̂ , �1�

where I is the identity matrix, � is Planck’s constant,
�=�eB /m0c is the cyclotron energy, and � is a material
parameter. V�r� represents a three-dimensional �3D� infinite
potential well in case of a single QD in this study. The op-
erator J is the angular-momentum operator for spin 3/2 par-
ticle defined in Ref. 19. The operators in Eq. �1� are defined
as follows:
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P̂+ =
�2

2m0
���1 + �2���x

2 + �y
2� + ��1 − 2�2��z

2� ,

P̂− =
�2

2m0
���1 − �2���x

2 + �y
2� + ��1 + 2�2��z

2� ,

R̂ =
�2

2m0
�− �3��23�−

2 ,

Ŝ =
�2

2m0
�2�3��3�−�z, �2�

where �1,2,3 represent the Luttinger material parameters,
�23= ��2+�3� /2, �a=ka− �e /c���A�a, ka=−i �

�a , a=x ,y ,z,
and k−=kx− iky. For this study, we choose InGaAs/GaAs
QDs. The InGaAs Luttinger material parameters are
�1=11.01, �2=4.18, and �3=4.84. The subscript 0 means no
external field in this study.

The LK Hamiltonian in Eq. �1� exhibits several symme-
tries that we use to characterize the Luttinger spinors �the
eigenstates of the LK Hamiltonian�. The confining potential
along the z direction is symmetric with respect to the origin
defined in the middle of the structure; yet, due to spin-orbit
coupling between different bands, our system does not have
definite parity symmetry along the z direction but the time-
reversal symmetry of the system demands the two HH bands
have opposite parity. The same also holds for LH bands. This
allows us to define the chirality operator10,12 which reads

�̂z =�
îz 0 0 0

0 îz 0 0

0 0 − îz 0

0 0 0 − îz

� , �3�

where îz is the inversion operator with respect to the z vari-
able. The �̂z operator has two eigenvalues, which we denote
by ↑ and ↓. In the case of �z=↑, the Luttinger spinors have
even parity with respect to z for the first two components of
the spinor and odd parity with respect to z for the last two
components of the spinor. In the case of �z=↓, the parity
pattern is reversed between the first two and last two com-
ponents of the spinor. Furthermore, square QDs also have
parity symmetry in the x-y plane, and we may define another

parity operator �̂xy analogous to the �̂z by replacing îz with

îxîy on the diagonal terms in Eq. �3�, where îx and îy are
inversion operators along the x and the y directions, respec-
tively. Arguments for the �̂z operator also apply to the �̂xy

operator. The only difference is that the R̂ operator in Eq. �2�
involves �k−�2 term which prevents further separation of x
and y variables. Again, �̂xy has two eigenvalues denoted by
�xy =+1 and −1. For �xy =+1, the first two components of the
spinor must have the same parity with respect to x and y, and
the last two components of the spinor must have opposite
parity with respect to x and y. For �xy =−1, the Luttinger
spinors again have the parity pattern switched between the
first two and last two components.

The four-band valence hole spinors in a square QD have
well-defined structures. The Bloch function part of the
Luttinger spinors is determined by the lattice symmetries;

FIG. 1. �Color online� Schematics of �a� square VCQDs of side lengths L=20 nm and height H=2 nm separated by a potential barrier
V0 of width Dv along the vertical direction. �b� Square LCQDs of same side lengths L and height H separated by a potential barrier V0 of
width Dh along the horizontal direction.
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while the envelope function part of Luttinger spinors is ob-
tained from Eq. �1�. In our analysis, we expand the envelope
function of the Luttinger spinors in eigenstates of the 3D
infinite potential well of the size of our computational box.

As mentioned, the chirality and the x-y parity symmetries
allow us to label Luttinger spinors by �z, �xy, and N, which
index the Nth eigenstate of subspace �z and �xy. For instance,
the Nth state of the subspace �z=↑ and �xy =+1 reads

�↑ ,+ 1,N	 = 

n+m=2p−1

n�+m�=2p �
Cnm1

↑,+1,N,3/2�n�x��m�y�cos�	z

Wz
�3

2
�

Cnm1
↑,+1,N,−1/2�n�x��m�y�cos�	z

Wz
�−

1

2
�

Cn�m�2
↑,+1,N,1/2

�n��x��m��y�sin�2	z

Wz
�1

2
�

Cn�m�2
↑,+1,N,−3/2

�n��x��m��y�sin�2	z

Wz
�−

3

2
�� , �4�

where p=1,2 ,3 , . . . are positive integers. Cnml
�z,�xy,N,Jz repre-

sents the coefficient for the envelope function of a specific
component �Jz	 of Luttinger spinors. In our study, we assume
that the confinement along the z direction is strong, so we
only need to consider the first two eigenfunctions of the one-
dimensional infinite potential well in this direction.
�sr

�r�=� 2
Wr

cos�
sr	r

Wr
� if sr is odd and � 2

Wr
sin�

sr	r

Wr
� if sr is even.

Wr is the computation box length along the r direction.
�Jz= 


3
2 , 


1
2 	 represents the Bloch functions19 of zincblende

structure with the total angular-momentum projection Jz. The
Luttinger spinors in other subspaces have distinguishable
parity patterns derived from Eq. �4� by switching either the
parity pattern with respect to the x-y variable or the z vari-
able between first two and last two components of the spinor.

From here onwards, the Luttinger spinor is written with
the components corresponding to the Bloch functions in the
order Jz=3 /2,−1 /2,+1 /2,−3 /2 as done in Eq. �4�, and we
will no longer explicitly write out the Bloch functions �Jz	 as
we have done above.

III. HOLE STATES IN SINGLE QUANTUM DOT

In this analysis, we take the entire Luttinger spinor as a
representation of valence-hole state confined in the quantum
dots as opposed to adopting the HH single-band
approximation.7,8 Due to the time-reversal symmetry, we
have a doubly degenerate ground state with distinct chirality
at zero field. We encode the qubit with the chirality, �z, of the
ground-state Luttinger spinors. We show that static magnetic
fields applied along the z and the x directions indeed act as
�̂x and �̂z operators, respectively, in the qubit subspace. This
result assures all the basic ingredients needed to perform
arbitrary single-qubit rotations.

A. Hole under Bz field

By diagonalizing the LK Hamiltonian for a square QD,
we find that the two ground states are characterized by quan-

tum numbers ��z= ↑ , �xy =−1� and ��z= ↓ , �xy =+1�, re-
spectively. Let us denote the state with ��z=↑	 by �1	, and the
other state with ��z=↓	 by �0	. We give an approximate form
of the envelope wave functions

�1	 =�
a�1�x��1�y��1�z�
b�2�x��2�y��1�z�

�c1�1�x��2�y� + c2�2�x��1�y���2�z�
�d1�1�x��2�y� + d2�2�x��1�y���2�z�

� , �5�

where �1�r�=� 2
Wr

cos� 	r
Wr

� and �2�r�=� 2
Wr

sin� 2	r
Wr

�. �0	 is ob-
tained by applying the time-reversal operator to �1	. Accord-
ing to Kramer’s degeneracy theorem, �0	 will have the same
set of envelope functions in Eq. �5� but complex conjugated
and in a reversed order in the spinor. Due to the strong con-
finement along the z direction, the ground states of the sys-
tem will contain a dominant contribution from the HH states.
Therefore, the states �0	 and �1	 correspond to either a +3 /2
HH or −3 /2 HH occupying the �1,1,1� orbital of a 3D infinite
potential box.

To analyze the system in the presence of external fields B,
we use the gauge A= �−Bzy /2,Bzx /2,Bxy−Byx�. First, we
consider the system under an external field Bz. Figure 2�a�
shows the energy spectrum of a single square dot charged
with one valence hole as a function of Bz. We see that the
qubit subspace, the two lowest energy levels, are well iso-
lated from the rest of the energy spectrum across a wide
range of applied field. Due to the weak coupling between the
qubit subspace and other excited states, we may treat the
effects of Bz fields by the first-order Löwdin perturbation
theory,20 which is simply a projection of the full LK Hamil-
tonian into the qubit subspace. The entire LK Hamiltonian is
decomposed into two parts: unperturbed Hamiltonian at the
zero field and additional perturbing Hamiltonian due to the
field. The additional Hamiltonian with external field Bz leads

to P̂1
+�−� operators of the form

VALENCE HOLES AS LUTTINGER SPINOR BASED… PHYSICAL REVIEW B 80, 235320 �2009�

235320-3



P̂1
+ =

�2

2m0
��1 + �2����z�2�x2 + y2� + �z�xky − ykx�� ,

P̂1
− =

�2

2m0
��1 − �2����z�2�x2 + y2� + �z�xky − ykx�� , �6�

where �z=
eBz

c� . Whether the applied field can break the
chirality symmetry �̂z and the x-y parity symmetry �̂xy de-

pends on the commutation relations between P̂1
+�−� operators

and inversion operators îz and îxîy. Since P̂1
+�−� commute with

îz, the Hamiltonian cannot mix the two spinors of different
chiralities. Indeed, when we project the Hamiltonian we find

the off-diagonal matrix elements �1�ĤLK�0	=0 and the diag-

onal matrix elements �1�ĤLK�1	 and �0�ĤLK�0	 differ only by
the Zeeman energy. The diagonal matrix elements read

�1�ĤLK�1	 = ����a�2 − �d1�2 − �d2�2��3/2� + ���− �b�2 + �c1�2

+ �c2�2��1/2� ,

�0�ĤLK�0	 = − �1�ĤLK�1	 , �7�

where the coefficients a, b, c, and d are defined in Eq. �5�. As
the ground state of flat QDs has dominant contributions from
HH components, typically �a�2�0.9 is much greater than the
magnitude of other coefficients. In HH single-band approxi-
mation, one simply sets �a�=1 and other coefficients to be 0.

B. Hole under Bx field

Next, we consider the system subject to a constant Bx
field. Figure 2�b� shows the energy spectrum of a single
square QD charged with one valence hole as a function of Bx.
The two-qubit states are again well isolated from the rest of
the energy spectrum across a wide range of Bx. Hence, we
repeat the same procedure to derive an effective Hamiltonian
for the qubit. The vector potential is A= �0,0 ,Bxy� and the

P̂1
+�−� operators for the additional LK Hamiltonian with Bx

field read

P̂1
+ =

�2

2m0
��1 − 2�2����x�2y2 − 2�xykz� ,

P̂1
− =

�2

2m0
��1 + 2�2����x�2y2 − 2�xykz� , �8�

where �x=
eBx

c� . We find that the diagonal matrix elements

�1�ĤLK�1	= �0�ĤLK�0	 and the off-diagonal matrix elements
are given by

�1�ĤLK�0	 = �g−3/2�P̂1
+�g3/2	 + �g3/2�P̂1

+�g−3/2	 + �g−1/2�P̂1
−�g1/2	

+ �g1/2�P̂1
−�g−1/2	 − �g−1/2�Ŝ��g3/2	 + �g3/2�Ŝ��g−1/2	

− �g−3/2�Ŝ�g1/2	 + �g1/2�Ŝ�g−3/2	 ,

��x��1 − 2�2�
Wy

Wz
Im�d1

�a� . �9�

where �x=�eBx /mc. �gi	 stands for the envelope function
of the i hole states in Eq. �5�, for instance,
�r �g3/2	=a�1�x��1�y��1�z�. The matrix elements

�g−3/2�P̂1
+�g3/2	 do not suggest coupling of +3 /2 HH and −3 /2

HH. Rather, it actually represents the coupling of a chirality
up ��z=↑�+3 /2 HH with a chirality down ��z=↓�+3 /2 HH.
Due to time-reversal symmetry, the chirality down +3 /2 HH
must have the same envelope function as the chirality up
−3 /2 HH. Similar argument applies to all other matrix ele-
ments in Eq. �9�. We further remark that the off-diagonal
matrix element contains pairs of complex conjugates; thus,
the matrix element is real valued.

The mixing of the qubit states is due to the simultaneous
breaking of the parity symmetry in the x-y plane and the
inversion symmetry along the z direction, for instance, we

refer to the term ykz in both P̂1
+ and P̂1

− operators in Eq. �8� as
responsible for the breaking of symmetries. The fact that we
may couple the qubit states by static fields is in contradiction
to analysis done in the HH single-band approximation.8 In
HH single-band approximation, the single-qubit operation
cannot be done by electron-spin resonance techniques be-
cause the magnetic field cannot couple two HH states �in the
leading dipole approximation�. More sophisticated tech-
niques such as electric dipole spin resonance are needed.
However, in our proposal, we define qubit states with the
entire Luttinger spinor, which is an admixture of all HHs and
LHs, and the mixing of the two-qubit states is due to the
coupling between the two Luttinger spinors as manifested in
Eq. �9�.

The �̂z operator for our proposed Luttinger spinor based
qubit is essentially driven by the Zeeman energy; whereas
the �̂x operator is based on the mixing of valence-hole com-
ponents by vector potential A and SO coupling. Due to the
different mechanisms of how the two-qubit states are oper-
ated on by Bz and Bx fields, the effective g factor �for a
simple spin in an external field� seems to have much stronger
transverse component,21 g��g�. Hence it takes more time to
perform a spin-flip process with the Luttinger spinor based
qubit. We will characterize the single-qubit operating time
with the � /Egap, where Egap is the energy difference be-

FIG. 2. Energy levels of the six lowest lying hole states as a
function of �a� magnetic field Bz �applied in the z direction� and �b�
magnetic field Bx �applied in the x direction�.
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tween ground and first excited states under Bx field. From
Fig. 2�b�, we see the characteristic time is around 1.5 ns
when Bx=1 T. However, modulating the strain of the host
material can relax the QD confinement along the z direction,
induce a stronger planar component of the g factors and im-
prove the single-qubit operating time.

Finally, we remark that the Luttinger spinor based qubits
are susceptible to the same channels of decoherence that are
already discussed for valence hole confined in QDs in Refs.
9 and 22–24. However, electric field fluctuation in the back-
ground of the host material will not affect the Luttinger
spinor based qubits. As the electric field induced dipole tran-
sitions, �� j�eE�t� ·r��i	, conserve the time-reversal symmetry,
the two-qubit states, which are Kramers doublets, will not be
mixed.

IV. HOLE STATES IN COUPLED QUANTUM DOTS

We now turn to the analysis of double qubit operations
with the Luttinger-spinors-based qubits. Our proposal for
double-qubit operations with the valence-holes-based qubits
relies on the following assumptions. First, we consider two
valence holes localized in two different QDs in the weak
tunneling limit and only the on-site Coulomb interaction is
taken into account. Second, we consider that each QD only
contains the two relevant qubit states. Under these assump-
tions, the hole-hole interacting Hamiltonian in second quan-
tization reads12

H2h = 

j,p

� jpcjp
† cjp + 


j

t�cjp�
† cjp + cjp

† cjp��

+
1

2 

j1p,j2p

j3p,j4p

p

Uj1pj2pj3pj4p
cj1p

† cj2p

† cj3p
cj4p

, �10�

where p are indices for QD numbers 1 and 2, p�p�, � jp is
the energy of valence-hole state �j	 on the pth dot, t is the
tunneling parameter between QDs, and Uj1j2j3j4

is the on-site
Coulomb interaction, with the matrix elements given in the
appendix. This Hamiltonian can be greatly simplified be-
cause the Coulomb interaction conserves the chirality of two
holes in the following manner: �a� if �z1

=�z2
and �z3

=�z4
,

Uj1j2j3j4
=Uc, �b� if �z1

��z2
and �z3

��z4
, Uj1j2j3j4

=Ux, and
�c� if just one of the valence holes switches chirality, U=0.
Taking also into account that we only consider two states of
distinct chirality on each QD, the on-site Coulomb interac-
tions term in Eq. �10� reduces to12

U =
1

2
�Uc + Ux�n̂jn̂j�, �11�

where n̂j�j�� is the number operator, and j , j� represents the
two chirality states on a QD. Different from electron spins,
the on-site Coulomb interaction between valence holes is
composed of a direct Coulomb term Uc and an exchange
term Ux which enhance the overall interaction. However,
apart from this difference, once we have parameterized the
tunneling parameter t and U, we have the Hubbard Hamil-

tonian. In the strong Coulomb regime, the interaction be-
tween two localized particles in the Hubbard model can be
reduced to two spins with the Heisenberg exchange constants
J proportional to t2 /U.

An interesting phenomenon11 associated with valence
holes is the possibility of engineering t to be either positive,
zero or negative in a stack of vertically coupled cylindrical
QDs by simply tuning the interdot distance. As the exchange
coupling between two qubits is directly proportional to t2,
this implies qubit-qubit interactions can be turned on and off
as needed. We would like to investigate whether the similar
phenomenon will happen with square QDs stacked either in a
vertical or lateral structure.

To estimate the magnitude of t, we rely on a tight-binding
picture in which a valence hole tunnels between the two dots
and the hybridization of local orbitals gives a symmetric
state, 1 /�2��1	+ �2	� with energy E0− t and an antisymmetric
state, 1 /�2��1	− �2	� with energy E0+ t. Thus, the energy gap
between first excited state and ground state is 2t. So we
compute the energy spectrum of a single valence hole in a
double QDs by exact diagonalizing Eq. �1�, then we extract
the value of t from the calculated energy gap.

A. Hole states in vertically coupled quantum dots

The potential V�r� of VCQDs is modeled with an infinite
potential well along the x and the y directions and double
well potential profile along the z direction. In the barrier
region between the dots, we set a constant finite potential of
320 meV corresponding to the band offset between InGaAs
and GaAs, same as reported in Ref. 10, so we may draw a
comparison between squarelike and disklike dots.

As shown in Fig. 3�a�, the lowest energy levels of differ-
ent chirality subspaces cross at a certain interdot distance.
The insets of Fig. 3�a� present the most dominant HH wave-

FIG. 3. �Color online� Energy levels of the two lowest hole
states as a function of the interdot distance in: �a� VCQDs and �b�
LCQDs. The critical distance at which the tunneling element is zero
occurs around 1.8 nm in �a�. The solid curve represents �z=↑ state
and the dashed curve represents the �z=↓ state. Inset: the dominant
heavy-hole component of the ground state before and after the
crossing.
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function profile along the z direction of the ground state be-
fore and after the crossing point. The wave-function plots
show the reversal of symmetry for the ground state of the
system. Similar phenomenon occurs in both square and disk
dots. These results confirm that the effects of HH and LH
mixing is insensitive to the confining potential in the x-y
plane. These results also imply that we can shut down any
undesirable hole-hole interaction between holes localized in
different dots if the interdot distance is chosen at the point
where the crossing occurs in Fig. 3�a�.

B. Hole states in laterally coupled quantum dots

The potential of LCQDs is modeled similar to that of
VCQDs except that the double well potential profile lies
along the y direction. Our result, Fig. 3�b�, shows no crossing
of lowest energy states from distinct chirality subspaces. We
understand that the confinement strength along the z direc-
tion plays a crucial role in determining how much HH and
LH bands mixing a system will experience, because QDs are
quasi-two-dimensional devices with a much smaller dimen-
sion along the z direction. In the case of VCQDs, the coupled
dots relax significantly the confinement strength of the hole
states along the z direction and bring the LH and HH ener-
gies closer. However, a LCQDs structure relaxes confine-
ment strength in the x-y plane which does not facilitate the
mixing of HH and LH states. Hence no reversal of the
ground state as a function of the distance is observed.

V. CONCLUSION

In summary, we consider the Luttinger spinor description
of confined valence-hole states in QDs. We identify the two-
qubit levels with two chiralities of the lowest energy Kram-
ers doublet and suggest that Bz and Bx fields act analogously
to the �̂z and �̂x operators. For arrays of hole qubits we study

tunneling of holes in vertical and lateral architectures as
dominant mechanism for the qubit exchange interaction. We
show that tunneling can be arrested for vertical pairs of quan-
tum dots but not for lateral architecture. The capability to
switch the sign of the effective tunneling t in VCQDs is
demonstrated. This suggests the possibility of turning off the
exchange interaction. With such exchange interaction being
very small one can envisage tuning this interaction with ad-
ditional metallic gates.
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APPENDIX: ON-SITE COULOMB MATRIX ELEMENTS

The on-site Coulomb matrix elements among valence-
hole states �ji	= ��zi

�xyi
,Ni	 can be evaluated as follows:

Uj1j2j3j4
=

e2

8	3�o
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where �0 is the static dielectric constants of InGaAs. We
define

Gs1s2s3s4
�r,r�,qr� =� � drdr��s1

�r��s4
�r��s2

�r���s3
�r��eiqr�r−r��.
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